Emission analysis of Pr³⁺ & Ho³⁺: Ca₄GdO(BO₃)₃ powder phosphors

B. Vengala Rao · S. Buddhudu

Received: 1 April 2007/Accepted: 15 May 2007/Published online: 17 October 2007 © Springer Science+Business Media, LLC 2007

Abstract Emission spectral results of $Pr^{3+} \& Ho^{3+}$ ions doped Ca₄GdO(BO₃)₃ powder phosphors are reported here. XRD, SEM and FTIR measurements have been carried out for them. The emission spectrum of Pr^{3+} : Ca₄GdO(BO₃)₃ has shown an emission transition ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ at 606 nm with $\lambda_{exci} = 480$ nm (${}^{3}H_{4} \rightarrow {}^{3}P_{0}$) and Ho³⁺: Ca₄GdO(BO₃)₃ phosphor has shown an emission transition ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ at 549 nm with $\lambda_{exci} = 447$ nm (${}^{5}I_{8} \rightarrow {}^{5}F_{1}$). Emission performances of these two phosphors have been explained in terms of energy level diagrams.

Introduction

Luminescent materials containing rare-earth or transition metal ions have become popular in the progress of optical materials of significant importance [1-5]. Commercial powder phosphors are usually based on the host matrices of borates, aluminates, vanadates, phosphates, silicates and tungstates etc [6-10]. Among them, all the borate based phosphors have three structural units, namely $(BO_3)^{3-}$, $(B_3O_6)^{3-}$, $(B_3O_7)^{5-}$ anion groups. We have mainly investigated the borate based materials with $(BO_3)^{3-}$ groups, since the electronic delocalization in the planer borate anions could be exhibiting NLO (Non Linear Optical) properties [11]. A large number of borate compounds are polyfunctional materials with non-linear optical, piezo-electrical and acousto electrical properties. In addition to that borate compounds are known to be transparent over a

B. Vengala Rao · S. Buddhudu (⊠) Department of Physics, Sri Venkateswara University,

Department of Physics, Sri Venkateswara University Tirupati 517502, India e-mail: drsb99@hotmail.com

wide spectral range from VUV to IR region, large band gaps, low cost of materials with good chemical stability [12-14]. Recently, the borate host matrix Ca₄GdO(BO₃)₃ has attracted a great deal of attention as a potential optical material based on its stable crystalline structure, nonhygroscopic, versatility and chemical stability [15–17]. Alkaline earth lanthanide oxy-borates doped with rareearth ions are of more interesting luminescent materials. Earlier, we have made an attempt to analyze the luminescence properties of $Eu^{3+}(4f^6)$ [18], $Tb^{3+}(4f^8)$ [19] and $Sm^{3+}(4f^5)$ [20] ions doped in Ca₄GdO(BO₃)₃ powder phosphors. These three rare-earth ions have prominent emissions (red, green and reddish orange) in the visible region. In the present work, we report on the emission properties of $Pr^{3+}(4f^2)$ & $(Ho^{3+}(4f^{10}))$: $Ca_4GdO(BO_3)_3$ powder phosphors.

Experimental studies

 $Ca_4GdO(BO_3)_3$: Pr^{3+} & Ho³⁺ powder phosphors were prepared by employing a solid state reaction method. The chemical equation can be expressed as follows

$$\begin{split} &8\text{CaCO}_3 + 6\text{H}_3\text{BO}_3 + (1-x)\text{Gd}_2\text{O}_3 \\ &+ x \text{ RE}_2\text{O}_3 \ (\text{RE} = \text{Pr}, \text{Ho}) \to 2\text{Ca}_4\text{Gd}_{(1-x)}\text{O}(\text{BO}_3)_3: \\ &\text{RE}^{3+}(=\text{Pr}, \text{ Ho}) + 9\text{H}_2\text{O} + 8\text{CO}_2 \end{split}$$

The starting reagents Gd_2O_3 (99.9%), Pr_2O_3 (99.9%) and Ho_2O_3 (99.9%), $CaCO_3$ and H_3BO_3 (Analar grade) were used in the samples preparation. They were weighed on stoichiometric ratio and powdered finely by using an agate mortar. In order to mix the raw chemicals homogenously, small amount of acetone was added and those powder mixtures were collected into an alumina crucible for heating. The temperature was gradually raised from the room temperature to 900 $^{\circ}$ C, where the mixture was kept for 10 h in an ambient atmosphere with an intermediate grinding.

The phase purity and phase structure of powder samples were characterized from the X-ray powder diffraction (XRD) patterns, using a HLG4/B-PC X-ray diffractometer with CuK_{α} radiation (1.54060 Å) and a graphite monochromator at the room temperature. The morphology of the powder phosphor has been observed using JEOL JSM 840A Scanning Electron Microscope. The samples were gold coated using the sputter coater polaron SC7610 system. The FTIR absorption spectrum of the sample was recorded on a Nicolet IR-200 spectrometer using KBr pellet technique in the wave number range of 400- $4,000 \text{ cm}^{-1}$. Both the excitation and emission spectra of the Pr³⁺ & Ho³⁺: Ca₄GdO(BO₃)₃ phosphors were measured on a Spex Fluorolog-2 Fluorimeter with a Datamax software to acquire the data with a Xe-arc lamp (150 W) as the excitation source. A Xe-flash lamp (25 W) with a phosphorimeter attachment was used to measure the lifetimes of the emission transitions of these powder phosphors.

Results and discussion

Figure 1 shows the X-ray diffraction patterns of (a) $Ca_4GdO(BO_3)_3$, (b) Pr^{3+} : $Ca_4GdO(BO_3)_3$, (c) Ho^{3+} : $Ca_4GdO(BO_3)_3$, (c) Ho^{3+} : $Ca_4GdO(BO_3)_3$ powder phosphors. The standard XRD pattern for $Ca_4GdO(BO_3)_3$ is also shown as a reference. It can be seen clearly that all the diffraction peaks of the synthesized $Ca_4GdO(BO_3)_3$: RE^{3+} (= Pr^{3+} , Ho^{3+}) phosphors are in good agreement with those of standard of $Ca_4G-dO(BO_3)_3$. These powder phosphors belong to a monoclinic structure with a space group Cm (a = 8.078; b = 15.98; c = 3.55; $\beta = 101.26$ Å). On comparing these XRD patterns, it is found that the Pr^{3+} & Ho^{3+} ions could easily be substituted (in the place of Gd^{3+}) in the host matrix without any change in the host matrix structure [21–23]. All

Fig. 2 SEM micrograph of (a) Pr^{3+} : Ca₄GdO(BO₃)₃, (b) Ho³⁺: Ca₄GdO(BO₃)₃ powder phosphors

Fig. 1 XRD patterns of (**a**) $Ca_4GdO(BO_3)_3$, (**b**) Pr^{3+} : $Ca_4GdO(BO_3)_3$, (**c**) Ho^{3+} : $Ca_4GdO(BO_3)_3$ powder phosphors

the diffraction peaks of Ca₄GdO(BO₃)₃: RE³⁺(=Pr³⁺, Ho³⁺) could be indexed according to those of $Ca_4GdO(BO_3)_3$, as shown in Fig. 1. Figure 2 shows the SEM micrograph of the $Ca_4GdO(BO_3)_3$ doped with Pr^{3+} & Ho³⁺ powder phosphors to understand their morphology and from Fig. 2 we have found that the particles are agglomerated in the phosphor powders studied. Figure 3 shows the FTIR spectra of Ca₄GdO(BO₃)₃: Pr³⁺ & Ho³⁺ ions doped powder phosphors and were assigned to vibrational transitions of the host lattice Ca₄GdO(BO₃)₃. FTIR patterns of those samples have similarities. The fundamental vibrations occur below 1,500 cm⁻¹, and are associated with parent three coordinated boron modes at 1,450–1,150 cm⁻¹ (v_3 , B–O antisymmetric stretch), 950–910 cm⁻¹ (v_1 , B–O symmetric stretch), 795–710 cm⁻¹ (v_2 , B–O–B bend). The v_3 mode is an intense one whereas v_1 is a weak as shown in Fig. 3. The strong features between 340 and 525 cm⁻¹ correspond to Gd–O stretching modes [24, 25].

Figure 4a shows the excitation spectrum of Pr^{3+} : Ca₄GdO(BO₃)₃ powder phosphor. With the transitions from the ³H₄ ground state to the ³P₀ (480 nm), ¹I₆ (463 nm) and ³P₂ (447 nm) excited states. The intense excitation wavelength is at 480 nm (³H₄ \rightarrow ³P₀) transition and emission spectrum of Pr^{3+} : Ca₄GdO(BO₃)₃ powder phosphor is shown in Fig. 4b. Under 480 nm excitation, the Pr^{3+} : Ca₄GdO(BO₃)₃ powder phosphor exhibits a strong red emission (¹D₂ \rightarrow ³H₄). Due to induced relaxation by a cross-relaxation [26] and also a multiphonon relaxation [27] that could be the cause, for the non-observable of ³P₀ \rightarrow ¹D₂ transition for the Pr^{3+} : Ca₄GdO(BO₃)₃ powder phosphor. Figure 5a presents the decay curve of

Fig. 3 FTIR spectra of (a) $Ca_4GdO(BO_3)_3$, (b) Pr^{3+} : $Ca_4GdO(BO_3)_3$, (c) Ho^{3+} : $Ca_4GdO(BO_3)_3$ powder phosphors

Fig. 4 (a) Excitation and (b) emission spectra of Pr^{3+} : Ca₄GdO (BO₃)₃ powder phosphor

the emission band ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ of Pr^{3+} : $Ca_{4}GdO(BO_{3})_{3}$ phosphor with an excitation at 480 nm with a lifetime $\tau = 1.015$ ms. An energy level scheme has been given in Fig. 5b to explain the excitation and emission process in the Pr^{3+} : $Ca_{4}GdO(BO_{3})_{3}$ phosphor.

The green emission from Ho³⁺ is of particular interest because it can be utilized as a green solid-state laser [28]. Figure 6a shows an excitation spectrum of Ho³⁺: Ca₄G-dO(BO₃)₃ powder phosphor and excitation bands are assigned to the electronic transitions ⁵I₈ \rightarrow ⁵F₁ (447 nm), ⁵I₈ \rightarrow ⁵G₆ (454 nm), ⁵I₈ \rightarrow ³K₈ (461 nm) of Ho³⁺. The emission spectrum of Ho³⁺: Ca₄GdO(BO₃)₃ powder phosphor in the wavelength range from 520 to 580 nm is shown

Fig. 5 (a) Decay curve and (b) energy level scheme of $\mathrm{Pr}^{3+}{:}\mathrm{Ca}_4\mathrm{GdO}(\mathrm{BO}_3)_3$ powder phosphor

Fig. 6 (a) Excitation and (b) emission spectra of ${\rm Ho}^{3+}{:}$ Ca_4GdO $(BO_3)_3$ powder phosphor

Fig. 7 (a) Decay curve and (b) energy level scheme of Ho^{3+} : Ca₄GdO(BO₃)₃ powder phosphor

in Fig. 6b. The emission spectrum of Ho³⁺: Ca₄GdO(BO₃)₃ powder phosphor, shows an emission band of ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transition [29]. Figure 7a presents the decay curve of the emission band ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ of Ho³⁺: Ca₄GdO(BO₃)₃ phosphor with an excitation at 447 nm with a lifetime is $\tau = 102 \ \mu$ s. An energy level scheme is given in Fig. 7b to explain the excitation and emission process in powder phosphor.

Conclusion

We have analyzed the emission characterization of Pr^{3+} & Ho³⁺: Ca₄GdO(BO₃)₃ powder phosphors. Also, we have analyzed their XRD, SEM, FTIR spectral profiles to understand their structure, morphology and functional groups. Based on the results obtained in the present work, we suggest that there luminescence phosphors could be identified as novel optical materials for certain electronic display applications.

References

- 1. Gao H, Wang Y (2007) Mater Res Bull 42(5):921
- Chiang CC, Tsai MS, Hon MH (2007) J Alloys Compd 431(1– 2):298
- 3. Kim HK (2006) Appl Phys Lett 89:233504

- 4. Johnson JA, Schweizer S, Henke B, Chen G, Woodford J, Newman PJ, Macfarlane DR (2006) J Appl Phys 100:034701
- 5. Guo H (2007) J Solid State Chem 180(1):127
- 6. Jia D, Jia W, Jia Y (2007) J Appl Phys 101:023520
- 7. Nakazawa E, Murazaki Y, Saito S (2006) J Appl Phys 100:113113
- 8. Shen F, He D, Liu H, Xu J (2007) J Lumin 122:973
- 9. Yan B, Su X, Zhou K (2006) Mater Res Bull 41(1):134
- 10. Neeraj S, Kijima N, Cheetham AK (2004) Chem Phys Lett 387(1-3):2
- Chen CT (1993) Laser science and technical international hand book, vol 15. Harwood Academic, New York
- 12. Chen CT, Bai L, Wang ZZ, Li RK (2006) J Cryst Growth 292(2):169
- Thakare DS, Omamwar SK, Moharil SV, Dhopte SM, Muthal PL, Konawar VK (2007) Opt Mater 29:1731
- 14. Duan C, Ynan J, Zhao J (2005) J Solid State Chem 178(12):3698
- Lukasiewicz T, Kityk IV, Akowska Janusik MM, Majechrowski A, Galazka Z, Kaddouri H, Mierczyk Z (2002) J Cryst Growth 237:641
- Aka G, Mougel F, Auge F, Kahn-Harari A, Vivien D, Benitez JM, Salin F, Pelene D, Balembois F, Georges P, Brun A, Le Nain N, Jacqet M (2000) J Alloys Compd 303:401
- Tukia M, Holsa J, Lastusaari M, Koski JN (2005) Opt Mater 27:1516
- Vengala Rao B, Rambabu U, Buddhudu S (2006) Physica B 382:86
- Vengala Rao B, Rambabu U, Buddhudu S (2007) Physica B 391:339
- 20. Vengala Rao B, Rambabu U, Buddhudu S (2007) Mater Lett 61:2868
- 21. Iyukhin AB, Dzhuriukii BF (1993) Russ J Inorg Chem 36:847
- 22. Wang Y, Endo T, Xie E, He D, Liu B (2004) Microelectron J 35:357
- 23. Kityk IV, Mefleh A (1999) Physica B 262:170
- Dominiak-Dzik G, Ryba-Romnowski W, Golab S, Macalik L, Hanuza J, Pajazkowska A (2000) J Mol Struct 555:213
- 25. Krishnakumar V, Nagalakshmi R (2004) Spectrochim Acta Part A 60:2733
- 26. Van Vliet JPM, Blask G (1988) Chem Phys Lett 143:221
- 27. Aron A, Tigreat PY, Caramanian A, Autic-Fidancer E, Viana B, Aka G, Vivien D (2000) J Lumin 87:611
- 28. Sumiyoshi T, Sekita H (1998) Opt Lett 23:1837
- Wang H, Jianfu Li, Guohna Jia, Zhenyn You, Fugui Yang, Yamping Wei, Yan Wang, Zhaojie Zhu, Xiuailu, Chaoyang Tu (2007) J Alloys Compd 431(1–2):277